Industrial processing of renewable raw materials

Course Coordinator

ECTS points:
3

Program:
doktorski

Course Description

Definition of renewable raw materials (RRM-s). Classification of RRMs, technological, ecological and economic reasons for application of RRMs. The comparison of RRMs with fossil raw materials (FRMs) and the influence on eco-systems. Databanks related to RRMs. Sustainability and sustainable biotechnological productions. Systematic analysis of technological production chains, transportations, intermediate substances, final products as well as recycling and disposal processes. Life cycle analysis (LCA) and sustainability process index (SPI). Biotechnological, chemical and thermo-mechanical processing of  waste materials and RRMs (lignocellulosic complex, green biomass, starch- and sugar containing sources, fatts ) toward biofuels, biosolvents and bioplastic.

Outcomes:

 

1)        To know the ecological, economic, technological and social reasons for application of RRMs, definition and classification of RRMs, the comparison of RRMs and FRMs.

2)        Utilization of ecological data-banks, calculation of yields for technological processing chains and systematic analysis of mass balances concerning RRMs, the influence of transportation, intermediates, byproducts and products; Natural, serviceable, ecologic and technological segment of Life cycle analysis (LCA); Sustainability process index (SPI).

3)          Similarities, differencies and ecological analysis of biotechnological and chemical  processing of RRMs (lignocellulosic complex, green biomass, starch- and sugar containing sources, fatts) as well as the waste materials toward bio-fuels, bio-plastics, bio-solvents and biocommodities.

4)        Description and analysis of thermo-mechanical processes in pretreatments  of lignocellulosic complex, technological byproducts and communal waste materials.

Lectures

lectures 10 h

seminars 10 h

Literature

Compulsory literature - up to 5 references:

No.

Title

1.

Braunegg, et al.: Synthesis of Biopolymers pp.127 – 137

Wallner, E., et al.: The Production of Poly-3-hydroxybutyrate-co-hydroxyvalerate with Pseudomonas cepacia ATCC 17759b on various carbon sources. pp.139 - 145.

Haage, G. et al.: Production of Poly-3-hydroxybutyrate-co-hydroxyvalerate with Alcaligenes latus DSM 1124 on various carbon sources. pp.147-155.

In:

Biorelated Polymers. Sustainable Polymer Science and Technology  ( 2001)Kluwer Academic/Plenum Publishers, ISBN 0-306-46652-X.

 

2.

Christian Krotscheck *, Michael Narodoslawsky:

The Sustainable Process Index A new dimension in ecological evaluation,

Ecological Engineering 6 (1996) 241-258

 

3.

Energie -unsere Abhängigkeit in den Griff bekommen,: Amt für amtliche Veröffentlichungen der Europäischen Gemeinschaften,  Luxemburg 2002

ISBN 92-894-1347-6

 

4.

Abschlussbericht über das Grünbuch "Hin zu einer europäischen Strategie für Energieversorgungssicherheit "MITTEILUNG DER KOMMISSION AN DEN RAT UND DAS EUROPÄISCHE  PARLAMENT KOMMISSION DER EUROPÄISCHEN GEMEINSCHAFTEN

Brüssel, den 26.6.2002

KOM(2002) 321 endgültig

 

5.

Herbert Danner and Rudolf Braun

Biotechnology for the production of commodity chemicals from Biomass

Chem. Soc. Rev., 1999, 28, 395–405

 

 

 

Recommended literature - up to 5 references:

No. Title
1.

Birgit Kamm* und Michael Kamm

Biobasierte Industrielle Produkte und Bioraffinerie-Systeme 

Ein Weg in die industrielle Zukunft des 21. Jahrhunderts?

 

2.

B. Kamm*, M. Kamm, K. Richter, B. Linke, I. Starke, M. Narodoslawsky, K.-D. Schwenke, S. Kromus, G. Filler, M. Kuhnt, B. Lange, U. Lubahn, A. Segert, S. Zierke

I.                    Grüne BioRaffinerie Brandenburg: Beiträge zur Produkt- und Technologieentwicklung sowie Bewertung

Brandenburgische Umwelt Berichte, BUB., 8, 260-269, 2000.

 

 

3.

Helias A. Udo de Haes, Reinout Heijungs, Sangwon Suh,

and Gjalt Huppes: Three Strategies to Overcome the Limitations of Life-Cycle Assessment, Journal of Industrial Ecology 8 ,19-32, 2004

 

4.  
5.